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ABSTRACT

We propose a new structural framework for Central Cuba based 
on the 3D inversion of gravity data and constrained by deep boreholes 
and surface geology. The proposed 3D density model defines structural 
highs that could work like oil traps for further exploration. This pos-
sibility is affirmed by oil wells that are presently productive and that 
are located on the top of the structural highs in our model. The model 
also shows the boundaries of several synorogenic basins (Central and 
Cabaiguán basins) originated by the convergence between the North 
American and Caribbean plates from the Late Campanian to Late 
Eocene. The model indicates the location of several sub-basins to the 
south, as well as the depths and thicknesses variations of the main litho-
logical groups, comprising reservoir and source rocks. The structural 
framework reflects the geological evolution of the region characterized 
by the collision and overthrust of ophiolitic rocks and the Cretaceous 
volcanic arc over the carbonate rocks of the Bahamas passive paleo-
margin. These geological processes controlled the spatial position and 
geometry of the different lithological groups, faults and basins.

Key words: 3D inversion; gravity anomalies; central Cuba; petroleum 
system.

RESUMEN

Proponemos un nuevo modelo estructural para el centro de Cuba, 
basado en la inversión 3D de datos gravimétricos y constreñido por pozos 
profundos y geología superficial. El modelo 3D de densidad define altos 
estructurales que podrían funcionar como trampas de hidrocarburos para 
una exploración posterior. Esta posibilidad se confirma con los pozos 
petroleros actualmente en producción y que están localizados en la cima 
de los altos estructurales. El modelo también muestra los límites de varias 
cuencas synorogénicas (cuencas Central y Cabaiguán), originadas por la 
convergencia entre las placas Caribeña y Norte Americana, que datan del 
Campaniano Tardío al Eoceno Tardío. El modelo indica la ubicación de 
varias sub-cuencas hacia el Sur, así como las profundidades y variaciones 
de espesor de los principales grupos litológicos, que comprenden las rocas 
madre y reservorios. El modelo estructural refleja la evolución geológica 
de la región, caracterizada por la colisión y el cabalgamiento de rocas 
ofiolíticas y del arco volcánico Cretácico, sobre rocas carbonatadas del 

paleomargen pasivo de Bahamas. Estos procesos geológicos controlaron 
la posición espacial y geometría de los diferentes grupos litológicos, fallas 
y cuencas.

Palabras clave: inversión 3D; anomalías gravimétricas; Cuba Central; 
sistema petrolero.

INTRODUCTION

The study area (Central Cuba, Figure 1) belongs to the Central 
Cuban Orogenic Belt (Cruz-Orosa et al., 2012). The orogenic belt was 
originated by the convergence of the North American and Caribbean 
plates from the Late Campanian to Late Eocene (Mann et al., 1995). 
This process involves three major tectonic units: the North American 
continental margin (Meyerhoff and Hatten, 1968, 1974; Pszczolkowski 
and Myczynski, 2003, 2010; Saura et al., 2008; Van Benthem et al., 
2014), the Zaza terrane (Hatten et al., 1958; Rosencrantz and Pardo, 
1993; Draper and Barros, 1994) and the Caribeana terrane (García-
Casco et al., 2008). In central Cuba, the Central and Cabaiguán ba-
sins are examples of basins originated during this geological process 
(Figures 1, 2 and 3). This process also produced favorable conditions 
for oil and gas accumulation inside the created basins (Blanco, 1999; 
Magnier et al., 2004).

Geological and geophysical surveys have identified several oil fields 
in central Cuba (Central basin, Figure 3): e.g. The Cristales and Pina oil 
fields (Hatten et al., 1958; Sánchez-Arango, 1977; Linares, 1978; Millán, 
1986; Álvarez-Castro, 1994). These surveys indicate one or several 
petroleum systems not fully surveyed in these basins. Fortunately, the 
Cuban territory is covered entirely by gravimetric studies. Particularly 
in the area of Central and Cabaiguán basins there are gravity data in 
scale 1:50,000 (Ipatenko, 1968). These gravimetric studies can reveal 
the major structural elements of a region. The density models, can in 
turn form the basis for future oil studies, such as 2D and 3D seismic 
surveys. In this paper, we used these gravimetric data to create a 3D 
density model of the Central Cuba area. This model proposes a new 
structural framework. Furthermore, we located and characterized 
some elements of the petroleum systems in the Central and Cabaiguán 
Basins. We identified the depth and thickness of the presumable source 
rocks, reservoir and seal rocks, as well as structures, that may be part 
of the oil traps.
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GEOLOGICAL SETTING AND PETROLEUM SYSTEM IN 
CENTRAL CUBA

This Cuban orogen results from the accretion and collision of three 
major tectonic units belonging to North American and Caribbean 
plates. The first unit, the North American continental margin, includes 
the Bahamas and Yucatán borderlands (Meyerhoff and Hatten, 1968, 
1974; Pszczolkowski and Myczynski, 2003, 2010; Saura et al., 2008; 
Van Benthem et al., 2014). The second unit is the Zaza terrane, which 
formed part of the Caribbean plate and embraces a portion of the 
Caribbean Volcanic Arc and its associated oceanic crust (Hatten et 
al., 1958; Rosencrantz and Pardo, 1993; Draper and Barros, 1994). 
The third unit is the Caribeana terrane, characterized by Mesozoic 
sedimentary rocks of the proto-Caribbean with features similar to those 
of the North American margin (García-Casco et al., 2008). 

The southern continental margin of the North American Plate 
began to develop in the Middle-Late Jurasic, after the western Pangaea 
rifting (Pindell and Dewey, 1982; Iturralde-Vinent, 2006; Pindell et 
al., 2006), giving rise to the Yucatán and Bahamas borderlands. The 
former is only present in western Cuba whereas the latter crops out in 
the northern part of central Cuba (identified as Paleomargin rocks in 
the northern portion of the study area; Figure 3).

The Zaza terrane in the Las Villas block thrusted northeastward 
onto the Bahamas borderland (Hatten et al., 1958; Pardo, 1975; Draper 
and Barros, 1994). According to Cruz-Orosa et al. (2012) from north 
to south, it is constituted by the northern ophiolite belt, the volcanic-
sedimentary complex, the plutonic complex and the Mabujina complex 
(Figure 2). 

The Caribeana terrane in the Las Villas block comprises only the 
Escambray complex, which crops out in a tectonic window below the 
Zaza terrane (Figure 2; Cruz-Orosa et al., 2012).

The structural relationships between the three major tectonic units 
belonging to North American and Caribbean plates are shown in Figure 
2. The section shown in the Figure 2 is located in the NW end of the 
study region (Figure 1), crossing the Cabaiguán basin. Sedimentary 
rocks of the basin are overlying on volcanic rocks, and these in turn 
on ophiolites and the paleomargin rocks.

In western and central Cuba, these accretion and collision processes 
included (1) the Aptian-early Campanian subduction of the proto-
Caribbean oceanic lithosphere and development of the Caribbean 
Volcanic Arc; (2) the subduction and accretion of the Caribeana ter-
rane, cessation of volcanic activity and deposition of a syntectonic cover 

on the extinct arc during the late Campanian-Maastrichtian; and (3) 
Palaeocene-Eocene frontal-oblique collision between the Caribbean 
and North American plates and origin of large, intervening synoro-
genic basins. These tertiary basins cover the orogen, displaying varied 
relations and position with respect to it. Their infills record a sudden 
deepening and evolution from an arc-related to a collision-related 
setting (Cruz-Orosa et al., 2012).

According to the most accepted geological models, during Late 
Campanian to Late Eocene, the Cretaceous Volcanic Arc and its associ-
ated oceanic crust (ophiolites) collided with the Bahamas continental 
paleomargin plate in an oblique angle (Ross and Scotese, 1988; Pindell 
et al., 1988; Pindell, 1994; Mann et al., 1995). This event caused the 
overthrust of the marginal sea ophiolites and the Cretaceous Volcanic 
Arc from the Late Cretaceous to Middle Eocene (Mann et al., 1995). 
As a result, ophiolitic and volcanic rocks are shown overthrusting to 
the Bahamas (Figure 2). Usually, in this region the volcanic rocks are 
overthrusting to the ophiolites. Along this process, folds and thrusts 
were developed with different displacement magnitudes, generating 
a slip fault in their tensional basins direction (Figure 4). Piggybacks, 
foreland and extensional basins were formed due to this overthrust-
ing process. Currently, these basins have great importance in the 
exploration of oil and gas because they can store some of the oil that 
migrated during these geological processes (Blanco, 1999). Central and 
Cabaiguán basins are examples of foreland basins developing during 
the deformation processes mentioned. 

The Central basin has several volcanic formations of Early-Late 
Cretaceous overlying to ophiolitic rocks of Early Cretaceous (Figure 
4). Overlying volcanic rocks are interbedded with sedimentary rocks 
of Coniacian-Maastrichtian age. The latest Cretaceous synorogenic 
sequence in the Central basin is constituted by these sedimentary 
rocks and others mentioned below. These sedimentary rocks may have 
several hundred meters of thickness.

Black shale was deposited in the post-Cenomanian-Campanian 
old sandstone and conglomerate of Guayos Fm. (Millán, 1986). Pyrite 
bearing coal is observed in this geological formation, indicating a 
restricted and anoxic environment of deposition.

In the Campanian-Maastrichtian, terrigenous-clay facies were 
deposited with little carbonate rocks (Eloisa and Catalina Fm.). It 
shows conglomerates, sandstone and calcareous tuff aleurolite. Clasts 
and fossils belonging to the Eloisa Fm. indicate a depositional environ-
ment varying from fluvial to shallow sea and deep water fans. Thick 
terrigenous-clastic-carbonate sequences are also observed with dark 

Figure 1. Geographical location of the study area. Geological sketch map of Cuba according to the subdivision in the geological units 
identified by Iturralde-Vinent (1994). Line A indicate the location of the cross-section of Figure 2.
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Tertiary sedimentary infill of the Central basin may exceed 
3000 m in thickness and includes a lower synorogenic and an upper 
post-orogenic sequence separated by an unconformity (Cruz-Orosa 
et al., 2012). Terrigenous-carbonate-clay facies are deposited in the 
Paleocene (Taguasco Fm.). Terrigenous-clay-carbonates are later 
deposited with thicknesses of hundreds of meters of conglomerate, 
sandstone, polymictic aleurolite and calcareous clay argillite (Loma 
Iguará Fm.). Terrigenous-clay-carbonate facies continued their deposi-
tion during the Middle Eocene (Zaza and Vertientes Fm.; Sánchez-

Arango, 1977; Millán, 1986). Also, terrigenous-carbonate-clay facies 
are deposited in the Oligocene (Jatibónico, Chambas and Tamarindo 
Fm). Carbonate facies forming the Paso Real Fm. are deposited dur-
ing the Miocene.

The Central basin is developed on the Zaza terrane and is struc-
turally related to the La Trocha fault (Figures 1 and 3). This basin has 
a half-graben geometry associated with a normal displacement in the 
La Trocha fault (Cruz-Orosa et al., 2012). The structure of the Central 
basin varies considerably along the SW-NE strike, following one of the 
main directions of the Cuba tectonic system (Puscharovsky et al., 1989). 
The Jatibónico 78 borehole supports the existence of a structural high. 

Figure 3. Geological map of Central and Cabaiguán basins (modified from Linares et al., 1985). Circles indicate the locations of the exploratory wells. Empty circles 
show oil productive wells. Continuous lines S1 and S2 indicate the locations of seismic sections represented in Figures 4 and 5. Boxes with numbers in the center 
indicate the locations and numbers of prisms used in the 3D inversion. Line A indicate the location of the cross-section of Figure 2.
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Northeastward, the basin is raised and the sedimentary infill is not as 
thick as in the southwestern part of the basin (Cruz-Orosa et al., 2007).

Cruz-Orosa et al. (2012) show an interpreted NW-SE seismic 
section located in the limit SW of the Central basin (Figure 5). This 
section shows half-graben geometry associated with the La Trocha 
fault. The synorogenic and postorogenic sequences are deepening 
northeastward and are slightly deformed by some syn-sedimentary 
folds that gradually attenuate upwards. 

The Cabaiguán basin extends westward from the Central basin and 
onto the volcanic-sedimentary complex of the Zaza terrane. The basin 
has a longitudinal axis striking E-W (Figure 3). The latest Cretaceous 
synorogenic sequence is equivalent to those in the Central basin. 
The Tertiary sedimentary infill is constituted only by the Paleogene 
synorogenic sediments that exceed 1500 m in thickness in the eastern 
part of the basin, becoming thinner towards the west (Cruz-Orosa et 
al., 2012).

The boundary between the Cabaiguán and Central basins is not 
clearly defined, but is probably affected by faults (Cruz-Orosa et al., 

2012). The basin is limited to the west by a SSE-NNW fault (Linares et 
al., 1985) and to the south by an E-W fault (Figure 3).

Cruz-Orosa et al. (2012) show an interpreted SW-NE seismic sec-
tion located in the approximate center of the Cabaiguán basin (Figure 
6). This section shows thrust faults and folding affecting the Paleocene 
to Early-Middle Eocene beds. 

Elements of the petroleum system in central Cuba: Source rocks, 
reservoir and seals

Bahamas paleomargin carbonates are considered the main source 
rocks of the Cuban oil system (outcropping northward the study area, 
Figure 3). They are formed at deep-water with organic-rich carbonate 
mudstones (Upper Jurassic and Lower Cretaceous age). Geochemical 
analyses and sample interpretations confirm the oil and gas potential of 
this group of rocks (Maksimov et al., 1986; Lopez-Quintero et al., 1994; 
Lopez-Rivera et al., 2003a, 2003b; Moretti et al., 2003a, 2003b; López-
Rivera and López-Quintero, 2004; Magnier et al., 2004; Domínguez 
and López-Quintero, 2005).
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Figure 4. Generalized stratigraphic column of the Central basin of Cuba (Blanco, 1999). The vertical 
dimension is not to scale. Curved lines indicate unconformity. FSA: Formational Structure Association 
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process is to estimate the depth to the upper and lower limit of each 
prism. We can simulate many rock groups with many sets of prisms 
pasted one over the other. In this way, the inverse process estimates 
the top and bottom 3D topography for every rock group. Gravity is 
sensitive to density contrasts, so we sometimes put together one or 
more vertically contiguous geological formations with similar densities 
and we call this a rock group. We assume the depths for every prism as 
unknown and density contrasts for every rock group as known. In order 
to reduce the inherent non-uniqueness of the gravity inverse problems, 
we add surface geology and borehole information as constraints. To 
introduce surface geology, the geological map is divided into cells of 
equal size, representing the upper limit of prisms (view Figure 3). Each 
of these prisms is assigned a rock group depending on the rock group 
that covers more space within the area occupied by the prism. If a 
deep rock group outcrops, the upper prisms collapses theirs thickness 
to zero. Borehole information is introduced by the depth where the 
borehole cuts the lower and upper part of every group, giving some 
uncertainty because the prism area is 3 km x 3 km and the borehole 
area is negligible in comparison.

The gravity data used in the 3D inversion were measured at 1:100, 
000 scale (Figure 7; Ipatenko, 1968). The gravimetric survey contains 
8,708 measured data, in an area of 8,577.88 km2 with an accuracy 
measured of 0.051 mGal. 

In this study, a geological map at 1:500,000 scale was used (modi-
fied from Linares et al., 1985) as well as data from 16 boreholes (Table 
1; Hatten et al., 1958; Sánchez-Arango, 1977; Linares, 1978; Millán, 
1986; Álvarez-Castro, 1994; Blanco, 1999). Both sets of information 

Even though Guayos and Catalina Formations are Upper Cretaceous, 
they show some evidence of source rocks (Navarrete-Reyes et al., 1994; 
Moretti et al., 2003b; Schenk, 2008). The Eloisa Formation (Upper 
Cretaceous) is constituted of oil reservoir conglomerate sections. At the 
Central basin, the Eloisa Formation has a considerable clay thickness 
that work like seal rocks (Álvarez-Castro, 1994). These three geological 
formations (Guayos, Catalina and Eloisa) are included in the Upper 
Cretaceous group of deep-water carbonate mudstones, also defined 
within the North Cuba Basin (Maksimov et al., 1986; Lopez-Quintero 
et al., 1994; Lopez-Rivera et al., 2003a, 2003b; Moretti et al., 2003a, 
2003b; López-Rivera and López-Quintero, 2004; Magnier et al., 2004; 
Domínguez and López-Quintero, 2005).

At the Central basin, various exploratory wells are located; some 
of them are productive in the Cristales and Pina oil fields (Figure 3; 
Table 1). All volcanic and sedimentary sequences (Upper Cretaceous 
to Eocene age), are potential reservoir rocks. Carbonated reservoirs not 
belonging to the paleomargin have been found at the Cristales oil field 
(Cristales 5, 57 and 63 boreholes). Volcano-sedimentary reservoirs are 
present in the Pina oil field (Figure 3; Table 1). 

METHODOLOGY AND DATA

The inverse modeling is based on Gallardo et al. (2003, 2005) and 
was applied to different targets in Pérez-Flores et al. (2004) and Batista 
et al. (2007, 2012, 2013). With a set of vertical prisms, we simulate the 
upper and lower topography of a rock group. The goal of the inverse 
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contributed to the constraint of the 3D model. A flat topography was 
assumed in the model. 

A physical-geological model is a simplification of the geological 
and physical characteristics of the investigated area. For this reason, 
despite the complex geology of the study area, especially at its NW limit 
(Figure 3), a model that included six rock groups was used (Table 2), 
classified by the densities and the stratigraphic positions of the geologi-
cal formations. The volcanic rocks were subdivided into two groups, 
based on the results of Díaz de Villalvilla (1988). Group 1 includes all 
sedimentary rocks outcropping in the investigated area with age from 
Late Cretaceous (Campanian-Maastrichtian age) to Neogene. Group 2 
contains Late Cretaceous volcanic rocks. Group 3 includes Late Jurassic 
to Early Cretaceous volcanic rocks (Zurrapandilla y Cabaiguán Fm.) 
and felsic intrusive rocks. Both levels of volcanic rocks (lower and 
upper) are different in densities because of the composition and so 
were separated into the two different groups 2 and 3. Ophiolitic rocks 
(basic and ultrabasic rocks) belong to the group 4. Group 5 comprises 
carbonate rocks of the Bahamas paleomargin. Group 6 includes meta-
morphic basement rocks.

In the study area 980 prisms were used for each of the six groups 
of rocks, i.e. 5,880 prisms in total. Figure 3 illustrates the assignment 
of every prism to a rock group. The first prisms (e.g. 1 to 242) were 
assigned to group 1, whereas that the prism 243 is assigned to group 
3, the lower level of volcanic rocks.

The Jatibónico 78 borehole is the most informative for the 3D 
inversion process. This is located at the center of the Central basin 
and its depth exceeds 4 km with a larger thickness within Group 3. It 
also indicates the absence of paleomargin rocks. 

The 3D inversion algorithm used tends to smooth the real tectonic 
deformation (folds and faults). Therefore, real deformations could be 
slightly larger than the present estimated ones.

DISCUSSION 

Basins framework
After 10 iterations, gravity data and the model resembled each other 

very well (Figure 8). There is a loss of high frequency features on the 
gravity response because we are using prisms with 3 km x 3 km area. 
Data and response differences are plotted on Figure 8c. Figure 9 shows 
the bottom depth for every rock group and Figure 10 their thicknesses. 
For further information, we made nine cross-sections (five with N-S 
direction and four with E-W direction) over the resulting 3D model. 
Figure 8b shows the locations.

Gravity data and response resemble each other very well with 97.4 
% fitting (Figures 8a and 8b), and their differences are almost random 
and averaging less than 2 mGals. Despite the inherent non-uniqueness, 
the surface geology and boreholes increase the geological certainty of 
the model. 

Zero mGal isoline shows approximately the boundary between 
Central and Cabaiguán basins (Figures 8a and 8b). The Central and 
Cabaiguán basins look elongated. The first has SW-NE direction and 
the second E-W. Most of the area occupied by both basins corresponds 
to negative gravity values (Figure 8a). Gravity highs are observed sug-
gesting structural highs. Some of these gravity highs are correlated with 
known wells (e.g. near Jatibónico 78 borehole; Figures 8 and 11). These 
gravity highs are of great interest for oil exploration. 

Group 1 (sedimentary rocks) exceeds 5 km depth in the SW and S 
of the Central basin (letter A in Figure 9a), defining sub-basins located 
south of the Central basin (letter B in Figure 9a). These rocks deepen 
up to 2.5 km at the easternmost area of the Cabaiguán basin (letter C in 
Figure 9a). The depth variations of this group reveal the 3D geometry 
of the two basins (Central and Cabaiguán basins) and the structural 
high locations (letters D1 to D15 in Figure 9a). These structural highs 
cause the decrease in the depths of groups 3 and 4 and consequently 
generate gravity highs (Figure 11). Recent investigations on the Central 
basin reported stored oil and gas in the contact between Cretaceous tuff 
and sedimentary rocks (groups 1 and 2). The oil and gas stored in this 
contact justifies the importance of determining the bottom surface of 
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Figure 6. a) SW-NE seismic section, b) line drawing of the Cabaiguán basin 
showing thrust fault as a main structural feature. Up, basal unconformity of the 
Paleogene synorogenic sequence (taked from Cruz-Orosa et al., 2012). Location 
of the seismic section in Figure 3 (S2).

Borehole Name Group
1

Group
2

Group
3

Group
4

Group
5

Group
6

1 Marroquí 1 1.1 > 1.2 
2 Francisco 2 1.833 > 1.766 
3 Sosa > 0.625 
4 Cabrera 1 > 1.842 
5 Cometa 1 > 2.7 
6 Adelaida 2 > 1.4 
7 Teresita 1 > 2.3 
8 Galata 1 > 2.4 
9 Vargas 1 > 1.3 
10 Júcaro 1 > 1.3 
11 Cristales 57* 1.6 > 1.6 
12 Cristales 63* 1.4 > 1.0 
13 Jatibónico 78 0.300 1.300 2.600 0.180 > 0.056 
14 Cristales 1 > 2.530 
15 Cristales 5* > 2.2 
16 Pina* 1.1 > 0.1 

Table 1. Boreholes at the Central basin. Numbers indicates thickness in km. 
Symbol > indicates that borehole did not cut the rock group’s lower part. Empty 
cases means that borehole did not reach the beginning of the rock group. Asterisk 
indicates oil-producing wells.
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the sedimentary rocks (group 1) and of defining such structural highs.
The basins' shape and boundaries are controlled by NE-SW and 

NW-SE faults (as seen on Figure 3). Both directions correspond with 
the directions of the main Cuban tectonic system (Puscharovsky et al., 
1989). The bottom of group 2 (upper level of volcanic rocks) deepens 
11 km at the southwestern end of the Central basin (letter E, at Figure 
9b). Knowing the depth variations of the rock group is very important 
because such volcanic sequences may be potential reservoir rocks. 
Ophiolites and paleomargin carbonate rocks approach the surface 
defining structural highs (Figures 9c, 9d and 9e). Paleomargin rocks 
are located at 5 km depth in the vicinity of high Jatibónico (Jatibónico 
78 well position). The larger thicknesses in group 2 are observed in 
both limits of Central basin (SW and NE) and westward Cabaiguán 
basin (Figure 10a). Paleomargin rocks increase their thickness at the 
northward end of Central basin (Figure 10d). 

The basement relief of the Central and Cabaiguán basins is better 
observed through cross-sections (Figures 11 and 12). Those cross-
sections also show the structural highs and the fault characteristics 
like shape, direction, depth and lithology affected by the tectonic. The 
characterization of these faults systems is very important, not only to 
assess the geological evolution of the study area, but also to determine 
the probable hydrocarbon migration paths.

The south limit of cross-section 1 (Figure 12) shows the geometry 
of the bottom of the sedimentary infill of the Central basin. This ge-
ometry is similar to that observed in the interpreted seismic section 
by Cruz-Orosa et al. (2012) (Figure 5). 

The 3D isometric representation shows better the depth and thick-
ness for every geologic group, underground faults and their projection 
on surface (Figure 13). This isometric representation also shows the 
basin shape and the structural highs. 

It is interesting to see the correlation between some of the structural 
highs and productive wells (11, 12 and 15 borehole with the structural 
high D7, and the 16 borehole with the structural high D9; Figure 9). 

The structural patterns identified in the proposed 3D density model 
help to know details of the petroleum system in the region, showing 
boundaries of basins and structural highs that could relate to possible 
oil traps. The model also suggests locations of fault systems that could 
act as migration pathways within the petroleum system.

Paleogeographical indicators
Large tectonic deformation is observed northward the Central and 

Cabaiguán basins, in which the majority of the rock groups described 
in the model are outcropping (Figure 3) or are relatively shallow 
(Cross-sections 1, 2 and 3 in Figures 11 and 12). Volcanic, ophiolitic 
and paleomargin thickness varies in the NW-SE direction (see Figures 
10b, 10c and 10d), following one of the main faulting directions 
(Puscharovsky et al., 1989; Peña-Reyna et al., 2007). The large tectonic 
deformations described as well as the variations of thickness of the 
rocks groups following the faults system indicate the relationship of the 
analyzed rocks with collision and overthrust processes that occurred 
during the Late Cretaceous (Campanian-Maastrichtian) to Middle 
Eocene (Ross and Scotese, 1988; Pindell et al., 1988; Pindell, 1994; 
Mann et al., 1995). 

Figure 7. Central and Cabaiguán basins gravimetric map (Modified from Ipatenko, 1968). Red circles indicate 
the locations of the exploratory wells. Empty circles show oil productive wells. There is no gravity data in 
the NE end of the research area.

Group Lithologies Density 
(g/cc)

1 Sedimentary rocks 2.3
2 Upper level of volcanic rocks 2.56
3 Lower level of volcanic rocks and intrusive 2.65
4 Ophiolitic rocks 2.36
5 Paleomargin rocks 2.5
6 Metamorphic rocks 2.6

Table 2. Rock groups used in the 3D inversion.
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The results of these processes are shown on the N-S and E-W 
cross-sections (Cross-sections 1 to 5, 8 and 9 in Figures 11 and 
12). The cretaceous volcanic arc is over ophiolites and these two 
are overthrusting the Bahamas Paleomargin. Moreover, this whole 
collection of rocks is also overthrusting the metamorphic basement. 

The southern limit of the area is characterized by layering rocks 
with minimal structural changes and few faults, while the north limit 
shows much folding and many faults indicating that the northern region 
was more affected by the collision process and overthrust (Figure 13).

The results shown in this section indicate that the proposed 3D 
density model describes the main geological events that affected the 
area. The model shows the distribution of the structural deformations 
caused by these events. 

Location of structural highs and probable oil traps
Because petroleum might have migrated from the source rocks to 

traps in the thrust belt and in the foreland basin (Lopez-Rivera et al., 
2003a, 2003b), we identified structures related to those traps in the 
Central and Cabaiguán basins. Both basins were initially defined and 
then structural highs were obtained from the cross-sections as well as 
depth and thickness for the rocks groups. These structural highs are 
very important targets for the petroleum industry. 

We identified 11 structural highs at group 1 and inside the Central 
basin (D1 to D11; Figure 9a). It is important to emphasize that in 
the structural highs D7 and D9, producing wells have already been 
located (wells Cristales 5, 57 and 63 in D7; well Pina in D9). Highs 
in the Cabaiguán basin (D12) and Central basin SE border (D13, 

Figure 8. Central and Cabaiguán basins gravimetric map: a) Observed; b) response data; c) residual. Calculation error of 2.3 %. Red points indicate borehole sites. 
Straight line indicates cross-sections locations. Curve lines indicate zero mGal isoline of the gravity data. 
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D14, D15) are also considered as potential well sites. We identified 
other structural highs and designated them with letter F in Figures 11
 and 12. 

Cross-sections 8 and 9 (Figure 11) show that the producing wells 
Cristales 5 (15) and Pina (16) are drilling inside their corresponding 
structural high related with faults. Drilling is cutting deeper faults that 
connect the source rocks with the traps. This suggests that most of the 
highs are very similar. We argue that other wells (e.g. Adelaida 2 (6) 
and Júcaro 1 (10); cross-section 3 in Figure 11 and cross-section 6 in 
Figure 12) are properly located over their highs, but they did not reach 
the fault zone or the contact sediments and volcanic rocks group and so 
are not oil productive. The model also shows some wells are misplaced 
(e.g. Galata 1 (8) in cross-sections 2 and 9; Figure 11), generally 
on synclinal zones, which was probably the cause of their 
unproductiveness. 

The structural highs identified above indicate areas to be studied 
more in detail using 2D or 3D seismic methods. These areas have the 
possibility of approaching the contact between group 1 and 2 which is 
likely to accumulate oil and gas within these structures. 

We also recommend seismic studies in the identified sub-basins 
to corroborate the proposed boundaries of both basins (Central and 
Cabaiguán basins).

CONCLUSIONS

The presented 3D density model of central Cuba proposes new 
characteristics on the structural deformation inside the Central Cuba 
area which are considered to have implications for the petroleum sys-
tem characterization for the Central and Cabaiguán basins and under-
standing of the geological evolution of the area. These new characteris-
tics are about the basins geometry and the location of structural highs 
and probable hydrocarbon traps. The model shows the variations of the 
depths and thicknesses of the lithological groups. Within such groups 
are the source and reservoir rocks of Cuban petroleum system at this 
region. The geologic group’s 3D reliefs, the location and geometry of 
every single structural high were determined based on the inversion of 
the gravity anomaly as well as the location of the faults (view diagrams 
of depths, cross-sections and isometric diagram). We also located sev-
eral sub-basins and deeper structural highs to the south of the Central 
basin, suggesting that these basin boundaries were displaced S-SW. 
The identified structural highs are constituted by sedimentary rocks, 
volcanic, ophiolitic and carbonate rocks of paleomargin. Some of these 
rocks are considered source rocks (carbonate rocks of paleomargin) 
and reservoir (sedimentary and volcanic rocks). These proposed new 
features, related to structural deformation, contribute to future hydro-

Figure 10. Rock groups thicknesses. a) Group 2: upper level of volcanic rocks; b) Group 3: lower level of volcanic rocks; c) Group 4: Ophiolitic rocks; d) Group 5: 
paleomargin rocks. Red points indicate boreholes. Curves and thick line indicate the proposed limits of the Central and Cabaiguán basins.
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carbon exploration in this region. Based on the results of the obtained 
3D density model, we propose areas for further investigations, mainly 
on the structural highs. The collision and overthrust processes of the 
Caribbean and American plate occurred from the Upper Cretaceous 
(Campanian-Maastrichtian) to Middle Eocene and they are well recog-
nized in the model by folding and faulting. These processes caused that 
some faults systems are now the basin boundaries but also the rising 
of the mentioned structural highs. The geometry of the lithological 
groups suggests that rocks located northward to the Central basin are 
most affected by the collision and overthrust processes. In general, the 
model describes the main geological events that affected the study area 
and shows the distribution of the main structural deformations caused 
by the collision and overthrust processes.
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