Mineralogical characterization of gold alluvial sands preconcentrates in the mining districts of Huepetuhe and Delta 1, Madre de Dios Department, Peru
PDF
HTML

Keywords

Gold alluvial sands
Gold preconcentrates
microscopy techniques; characterization; crystal; garnet; morphology; nucleation and growth
Mineralogical characterization
geochemistry
Sustainable mining practices

How to Cite

Merino, D., Gómez-Marroquín, M., Telmer, K., & Paccha, C. (2025). Mineralogical characterization of gold alluvial sands preconcentrates in the mining districts of Huepetuhe and Delta 1, Madre de Dios Department, Peru. Revista Mexicana De Ciencias Geológicas, 42(2), 60–72. https://doi.org/10.22201/igc.20072902e.2025.2.1857

Citas en Dimensions Service

Share on

Abstract

Artisanal and small-scale gold miners (ASGM) in the Madre de Dios Department, Peru, use mercury for gold processing, making it the primary source of environmental contamination. However, the lack of geochemical and mineralogical characterization of alluvial preconcentrates limits the search for alternative metallurgical processes. To address this, seven samples of alluvial preconcentrates (CQI-04, CQI-05, DAI-01, DAI-02, DAI-03, DAI-29, DAI-Hg-06) from two mining concessions in the Huepetuhe and Delta 1 mining districts were analyzed to determine their geochemical and mineralogical composition. The study included X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and sieve analysis with fire assay for gold quantification. The samples of the Puerto Belén concession, located in the Huepetuhe district, contain more than 80 % coarse gold particles (>250 µm), are rich in iron oxides (ilmenite, magnetite, hematite), quartz, and contain minor amounts of andalusite, zircon, and unidentified phases containing light rare earth elements (LREE). The samples of the Raul 1 concession, in the Delta 1 district, have 50 % medium-sized gold particles (106–250 µm), 28 % fine gold (<106 µm), and 23 % coarse gold (>250 µm), with dominant quartz content, followed by hematite, ilmenite, zircon, rutile, muscovite, and LREE-bearing phases. In both concessions, gold exhibits high purity (99 % Au, 1 % Ag). Optical and electron microscopy analyses reveal sub-rounded to elongated gold particles within ferritic and siliceous matrices. Understanding the geochemical and mineralogical characteristics of alluvial preconcentrates is essential for proposing mercury-free metallurgical alternatives that enhance gold recovery and enable the extraction of other economically valuable minerals such as iron, titanium, zircon, and rare earth elements.

https://doi.org/10.22201/igc.20072902e.2025.2.1857
PDF
HTML

References

Alves, K. D. S., Sánchez, S. B., Barreiro, J. G., Palomares, R. M., & Prieto, J. M. C. (2020). Morphological and compositional analysis of alluvial gold: The Fresnedoso gold placer (Spain). Ore Geology Reviews, 121, 103489. https://doi.org/10.1016/j.oregeorev.2020.103489

Artisanal Gold Council. (2017). Reporte de Inventario: Estimaciones de referencia del uso y consumo de mercurio en la minería de oro artesanal y de pequeña escala en Perú, Proyecto: Plan Nacional de Acción sobre Mercurio en el sector de la Minería de oro Artesanal y de Pequeña escala en el Perú. Ministerio del Ambiente, Perú.

Artisanal Gold Council. (2022). Reporte interno: Piloto IV uso de tecnologías limpias libre de mercurio. Artisanal Gold Council

Aranda, A. (1999). Hacia la localización de minerales pesados en el Perú. Simposium Internacional de Minerales Industriales del Perú.

Chen, Y., Song, Y., Li, W., & Cai, L. (2017, August 25-27). Mineralogical characteristics of a micro-fine and low grade refractory gold ore [Paper presentation]. International Conference on Materials Applications and Engineering (ICMAE 2017), Qingdao, China. MATEC Web of Conferences, 142 (2018), https://www.matec-conferences.org/articles/matecconf/pdf/2018/01/matecconf_icmae2017_02011.pdf

Craw, D., & Lilly, K. (2016). Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. Ore Geology Reviews, 79, 301–315. https://doi.org/10.1016/j.oregeorev.2016.06.001

Delgado Madera, G. F., & Benavente Escobar, C. L. (2011). Evaluación del río Vilcanota en el distrito de San Salvador, Provincia de Calca - región Cusco (Informe Técnico;N° A6578).. Instituto Geológico, Minero y Metalúrgico (INGEMMET). https://hdl.handle.net/20.500.12544/1813

Espin, J., & Perz, S. (2021). Environmental crimes in extractive activities: Explanations for low enforcement effectiveness in the case of illegal gold mining in Madre de Dios, Peru. The Extractive Industries and Society, 8(1), 331–339. https://doi.org/10.1016/j.exis.2020.12.009

Galloso Carrasco, A., Steinmüller, K., & Pari Pinto, W. (1996). Evaluación geológico-minera por oro y dispersión de mercurio en el río Madre de Dios (Boca del río Colorado-lago Sandoval) y estudio geofísico de las áreas: Huepetuhe, Caychihue, Puquiri y Puerto Carlos (Informe Técnico A6240). Instituto Geológico, Minero y Metalúrgico. https://hdl.handle.net/20.500.12544/4874

Huamán-Paredes, F. E., Palma-Figueroa, G. U., & Flores-del Pino, L. (2020). Caracterización preliminar de residuos de minería aluvial en la región Madre de Dios - Perú. Revista Cubana de Química, 32(2), 232–244. https://cubanaquimica.uo.edu.cu/index.php/cq/issue/view/318

Lanckneus, J. (1991). Los placeres auríferos de Madre de Dios (SE Perú). In G. Herai & M. Fornari (Eds.). Yacimientos Aluviales de Oro, Actas del Simposio Internacional sobre Yacimientos Aluviales de Oro. (pp. 83-86). Institut Français de Recherche Scientifique pour le Développement en Coopération (ORSTOM).

Mathioudakis, S., Xiroudakis, G., Petrakis, E., & Manoutsoglou, E. (2023). Alluvial gold mining technologies from ancient times to the present. Mining, 3(4), 618–644. https://doi.org/10.3390/mining3040034

Medina, G. (1999, August 18–20). Minerales pesados en gravas auríferas de Huepetuhe y Caychive (Madre de Dios). Simposium Internacional de Minerales Industriales del Perú.

Mosquera, C., Chávez, M. L., Pachas, V. H., & Moschella, P. (2009). Estudio diagnóstico de la actividad minera artesanal en Madre de Dios. CooperAccion, Caritas Madre de Dios, Conservación Internacional, Perú. http://mddconsortium.org/wp-content/uploads/2014/11/CooperAccion-2009-Estudio-Diagnóstico-de-la-Actividad-Minera-Artesanal-en-Made-de-Dios.pdf

Observatorio Nacional de Política Criminal & United States Agency for International Development (2021). La minería ilegal en la Amazonía peruana. Ministerio de Justicia y Derechos Humanos. https://www.gob.pe/institucion/minjus/informes-publicaciones/1988565-la-mineria-ilegal-en-la-amazonia-peruana

Osores Plenge, F., Rojas Jaimes, J. E., & Manrique Lara Estrada, C. H. (2012). Minería informal e ilegal y contaminación con mercurio en Madre de Dios: Un problema de salud pública. Acta Médica Peruana, 29(1), 1–5. https://amp.cmp.org.pe/index.php/AMP/article/view/1155/627

Palacios-Torres, Y., De la Rosa, J. D., & Olivero-Verbel, J. (2020). Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environmental Pollution, 256, 113290. https://doi.org/10.1016/j.envpol.2019.113290

Pérez Honores, C. J., Castro Sánchez, M., & Loaiza Choque, E. (2003). Reconocimiento de las actividades mineras y metalúrgicas en la cuenca de los ríos Madre de Dios e Inambari (Informe de visita técnica de campo). Instituto Geológico, Minero y Metalúrgico (INGEMMET). https://repositorio.ingemmet.gob.pe/bitstream/20.500.12544/4724/3/A6114-Reconoc.actividades_rios_Madre_de_Dios_Inambari.pdf

Prater, L. S. (1957). Black Sands (Information Circular No. 1). Idaho Bureau of Mines and Geology.

Velásquez Ramírez, M. G., Guerrero Barrantes, J. A., Thomas, E., Gamarra Miranda, L. A., Pillaca, M., Tello Peramas, L. D., & Bazán Tapia, L. R. (2020). Heavy metals in alluvial gold mine spoils in the Peruvian Amazon. CATENA, 189, 104454. https://doi.org/10.1016/j.catena.2020.104454

Sousa, R. N., Veiga, M. M., Klein, B., Telmer, K., Gunson, A. J., & Bernaudat, L. (2010). Strategies for reducing the environmental impact of reprocessing mercury-contaminated tailings in the artisanal and small-scale gold mining sector: Insights from Tapajos River Basin, Brazil. Journal of Cleaner Production, 18(16–17), 1757–1766. https://doi.org/10.1016/j.jclepro.2010.06.016

Uba, C. E., Strecker, M. R., & Schmitt, A. K. (2007). Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35(11), 979–982. https://doi.org/10.1130/G224025A.1

Velásquez Ramírez, M. G. (2017). Metales en suelos explotados por la pequeña minería aurífera aluvial en Madre de Dios, Perú [Undergraduate thesis]. Universidad Nacional Agraria la Molina.

Velásquez Ramírez, M. G., Guerrero Barrantes, J. A., Thomas, E., Gamarra Miranda, L. A., Pillaca, M., Tello Peramas, L. D., & Bazán Tapia, L. R. (2020). Heavy metals in alluvial gold mine spoils in the Peruvian Amazon. CATENA, 189, 104454. https://doi.org/10.1016/j.catena.2020.104454

Wang, X., Qin, W., Jiao, F., Yang, C., Cui, Y., Li, W., Zhang, Z., & Song, H. (2019). Mineralogy and pretreatment of a refractory gold deposit in Zambia. Minerals, 9(7), 406. https://doi.org/10.3390/min9070406

Youngson, J. H., & Craw, D. (1999). Variation in placer style, gold morphology, and gold particle behavior down gravel bed-load rivers: An example from the Shotover/Arrow-Kawarau-Clutha River system, Otago, New Zealand. Economic Geology, 94(5), 615–634. https://doi.org/10.2113/gsecongeo.94.5.615

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Daniel Merino, Mery Gómez-Marroquín, Kevin Telmer, Cesar Paccha

Downloads

Download data is not yet available.